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Abstract1

We propose CONFORM (Crowd-Sourced Open Neuroscience fMRI Foundation Model),2

a project that will bring together recent advances in neural data processing and analysis with3

a novel, crowd-sourced infrastructure. This transformative approach will overcome several4

current challenges in creating a foundational human fMRI model for vision: collecting5

massive amounts of data from a handful of participants is neither scalable nor sustainable;6

the number of participants is small for such datasets; stimulus diversity is limited; and7

generalizability to different populations is poor. CONFORM will overcome these limitations8

by combining a powerful generative denoising method (SNAP), a scalable framework for9

aggregating existing fMRI datasets (MOSAIC), and a meta-learning model that enables10

generalization with much smaller data from new participants (BraInCoRL). Our collabo-11

rative effort will produce models built on unprecedented scale and diversity—ultimately12

with hundreds of participants and hundreds of thousands of naturalistic image and movie13

stimuli—and provide the tools for continuous expansion of the underlying dataset. This14

“crowd-sourced” approach will allow many more researchers to leverage state-of-the-art15

NeuroAI methods using the scale of data they typically collect, democratizing access to16

powerful models and accelerating scientific discovery for a wide range of neuroscientific17

domains and populations.18

1 Background and Introduction19

Creating a foundational human fMRI model is a critical next step for extending modern neuroAI [1].20

To achieve this, the model must generalize across both individuals and tasks, which requires a21

large volume of data with many participants, observations, and diverse stimuli. Historically, a22

significant impediment has been that most fMRI studies have small sample sizes and a low number of23

observations per session; the latter also leading to poor stimulus diversity. As a result, typical fMRI24

experiments sample only a tiny fraction of the human population and the vast space of real-world25

visual, auditory, or linguistic inputs. These limitations impeded efforts to draw robust conclusions26

from fMRI data and to integrate insights from modern AI systems into our understanding of the27

human brain—a challenge that is exacerbated by the inherently noisy BOLD signal.28

In visual neuroscience, a first step in meeting this challenge has already been taken through the29

collection of large-scale fMRI datasets, which typically include brain responses from a small number30

of participants each scanned over many repeated sessions (15-40 hours-long sessions), who view a31

large number of stimuli (5000-10,000 stimuli per participant) [2, 3, 4, 5]. This approach of “deeply32

sampling” a small number of participants increases the statistical power of experiments [6, 7],33

and enables powerful parameter-rich, within-subject models. While this approach of collecting34

large datasets from small groups of participants has led to hundreds of publications and impactful35

discoveries, even this strategy is neither sustainable nor scalable for both scientific and practical36

reasons:37

1. Successful data collection at this scale depends on heroic efforts by both experimenters and38

participants. The time commitment and scheduling complexities are onerous: participants,39

experimenters, and scanners must remain consistently healthy and available (e.g., in both40

the BOLD5000 and NSD datasets at least one participant failed to complete the study [2, 3];41

in the THINGS dataset one participant was canceled due to “technical issues” [4]).42
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2. Even with this extraordinary amount of effort, data was collected from only 3-8 participants43

– a small number that does not support the hoped-for population diversity expected of human44

neural foundation models.45

3. Stimulus diversity is necessarily limited by small participant pools and the need for stimulus46

repeats and/or overlap across participants [8]. Even within a single recurring participant,47

only a limited number of observations are possible. Moreover, controlled tasks and stimulus48

selection methods have further reduced diversity in the visual images included in each49

dataset: NSD uses only COCO images (only 80 object categories [9], which leave gaps in50

many regions of natural image space [10]), BOLD5000 uses COCO as well as SUN [11]51

and ImageNet [12] images, and THINGS uses a larger number of “concepts”, but depicted52

as single cropped objects that show little context [4].53

4. Creating the infrastructure for data management and distribution is a considerable technical54

challenge. Short-term it requires a robust and replicable data processing pipeline and a55

reliable platform for data distribution. Long-term it requires stability—years later the56

distribution website should remain readily accessible.57

5. The monetary costs of collecting data can present a challenge to any single lab (e.g., five58

participants across 25 x one hour scans could easily cost on the order of $100,000) and risks59

over-representing the interests of the small number of labs with the necessary resources.60

Despite their increased scale relative to standard fMRI studies, these datasets still present significant61

challenges in the construction of NeuroAI models. The number of observations and participants is still62

small for purposes of model training, and data quality is dependent on preprocessing methods. More63

importantly, prediction accuracy and decoding performance are typically high only when trained and64

tested within the same participant—due to inherent structural and functional differences between65

individual brains and, at present, weak methods for generalizing across them. Consequently, when66

models are applied across participants, even within the same study, their performance and decoding67

capabilities decrease dramatically.68
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Figure 1: CONFORM workflow. A single, optimized experimental design is distributed to multiple
sites for data collection. The collected data is then centralized for preprocessing, alignment, and
integration into a foundational dataset. This process creates a continuous feedback loop, allowing the
dataset to grow in size and diversity, which informs future experimental design and provides the basis
for a strong foundation model.

2 Towards a dynamic foundation model for vision fMRI69

We propose CONFORM (Crowd-Sourced Open Neuroscience fMRI Foundation Model)–a strategy70

for building foundational human vision fMRI models through community-contributed datasets and71

models. Following previous efforts in systems neuroscience [13], we propose to leverage multi-site72

crowd-sourcing to enable collection of larger and more diverse datasets, along with new computational73

advances to facilitate coherent analysis. As detailed below, the building blocks of CONFORM are74

already in place, spanning four key domains:75

1. A larger-scale and highly diverse dataset that aggregates close to 100 participants and76

100,000s of natural scenes depicting 1000’s of object categories/concepts in context. “MO-77

SAIC” [14] is a scalable framework for combining extant fMRI datasets [2, 3, 4, 5, 15, 16,78

17, 18], using common preprocessing and registration, into a single, extremely large-scale79

and extensible vision dataset.80

2



2. Higher data quality through an enhanced preprocessing pipeline to improve the signal-81

to-noise ratio of measured BOLD responses. Building on GLMSingle [8] and Generative82

Modeling of Signal and Noise (GSN [19]), we will develop SNAP (Signal-Noise Adaptive83

Partitioning)—a powerful, generative low-rank denoising method that optimally separates84

signal from noise in neural data, outperforming trial-averaging and PCA, especially when85

noise is structured or complex (as in fMRI).86

3. Enhanced generalization to new participants from outside-of-dataset studies using “BraIn-87

CoRL”—a meta-learned in-context foundation model that enables generalization using only88

a small amount of additional data [20].89

4. Crowd-sourcing infrastructure to support the continuous integration of data from new studies90

across unique participants and data collection sites.91

Building on these methodological advances and the lessons learned from distributed large-scale fMRI92

datasets [2, 3, 4, 5, 15], CONFORM will be a unique collaborative modeling strategy that will enable93

the creation of large-scale vision foundation fMRI models on datasets with improved signal quality,94

more participants, greater stimulus diversity, and which, critically, generalizes to new participants95

and studies in low data regimes. Longer term— across labs, participants, and MRI systems, we96

further propose a “crowd-sourced” community-driven effort to collect and integrate new data, thereby97

continuously improving the models. Given the challenges of collecting ever-larger and more diverse98

datasets at a single site, we suggest that crowd-sourcing is the only tenable solution for building99

appropriate-scale, truly foundational neural datasets. However, developing a viable crowd-sourcing100

infrastructure at this scale remains an unsolved challenge with a very high risk/reward tradeoff.101

We are taking on this challenge by integrating and further developing recent advances in fMRI102

preprocessing, data aggregation, and generalization. CONFORM will also include the infrastructure103

for continuously expanding the dataset’s size and the diversity of its stimuli [21]. Our project will use104

a two-pronged approach for data contributions: locally directed and globally directed.105

The locally directed model is straightforward: the CONFORM distribution website will also accept106

contributions. In contrast to other neural data repositories [22], we will provide detailed specifications107

for the acceptable designs, stimuli, tasks, and data formats to ensure submissions can be seamlessly108

integrated into CONFORM with high data quality. One attractive aspect of a locally directed model109

is that CONFORM may be able to re-purpose extant data that was already collected for a different110

purpose, thus giving new life to data that may have been otherwise dormant for years. At the111

same time, processing all available public data is not feasible. As an alternative, we will facilitate112

researchers re-analyzing their datasets with our pipeline. Our goal with the locally directed model is113

to be as inclusive as possible with stimuli and tasks, even with necessary limitations.114

The globally directed model is more ambitious and forward-looking, and offers a greater potential115

payoff. We will provide a complete, turn-key study design to participating research sites, streamlining116

the data collection process (Fig. 1). We will optimize the selection of stimulus images to achieve the117

best possible distribution of images within natural image space across many participants [10]. We will118

also optimize for repeated stimuli and partial stimulus overlap across the population. Similarly, we119

will optimize the study design with respect to scanning parameters and trial structure. Collaborators120

will be able to specify both the length of scan sessions and the total number of participants they121

contribute. They will then be provided with complete scan protocols, experimental control files, and122

stimulus images. An interface on the same website used for distribution will allow them to download123

these files and upload their collected data for incorporation into the dataset.124

CONFORM’s framework towards a scalable foundation fMRI model will enable powerful insights125

into human vision. Datasets within CONFORM will continue to grow in size and stimulus diversity as126

the community contributes data. Critically, the resultant models will achieve improved generalization127

to new participants across diverse subpopulations, requiring only a relatively small amount of data128

per individual. As such, CONFORM will dramatically broaden the accessibility of NeuroAI methods,129

empowering researchers in a much wider range of scientific domains to make new discoveries.130

2.1 Improving data quality—SNAP131

The recently introduced GLMSingle preprocessing pipeline dramatically improves the signal-to-noise132

ratio of measured BOLD responses acquired using standard fMRI methods [8]. In parallel, the133

Generative Modeling of Signal and Noise technique (GSN, [19]) has established a new paradigm134

for accurately estimating the parameters of the signal and noise distributions that give rise to the135

observed measurements. We will build upon the GLMSingle and GSN approaches in developing136
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“SNAP” (Signal-Noise Adaptive Partitioning)—a generative low-rank denoising method that opti-137

mally separates signal from noise in neural data, improving the performance and interpretability of138

downstream computational models.139

SNAP will address a core challenge in building a truly foundational fMRI dataset by maximizing the140

amount of stimulus-driven information (signal) that can be recovered from each participant’s mea-141

surements, while partitioning out the influence of other sources of variability (noise). Conventional142

denoising strategies such as trial averaging are straightforward and widely used, but they rely on the143

assumptions that noise is independent across trials and uncorrelated between voxels. In actuality,144

these assumptions are often violated in fMRI data, where noise can be structured, spatially correlated,145

and non-stationary. Similarly, PCA-based low-rank denoising identifies directions of highest variance146

but does not explicitly distinguish between signal and noise, leading to bias when noise variance is147

large or when signal and noise share overlapping subspaces [19, 23], .148

SNAP addresses these limitations by extending the GSN framework [19] to produce denoised trial-149

averaged data optimized for downstream modeling. GSN estimates separate covariance structures for150

the signal and noise directly from repeated-trial measurements. These estimates define a signal-aware151

basis for low-rank reconstruction, allowing us to selectively preserve dimensions most likely to reflect152

stimulus-driven activity while discarding those dominated by noise.153

Critically, SNAP relies on cross-validation to determine the optimal number of signal dimensions to154

retain, with thresholds chosen either at the multi-voxel or single-voxel level, depending on the data’s155

heterogeneity in feature tuning and signal-to-noise ratio. This cross-validated tailoring of denoising156

parameters will be particularly important given CONFORM’s aim of integrating large, multi-site157

datasets, where measurement quality can vary widely across participants, scanners, and brain regions.158

In simulations with known ground truth, SNAP consistently recovers more accurate signal estimates159

than trial averaging or PCA-based methods, achieving lower variance without introducing substantial160

bias. Applied to real datasets, including primate electrophysiology and human fMRI, SNAP yields161

substantial gains in cross-validated encoding model performance and improves the interpretability162

of model-derived feature visualization (manuscript in preparation). In the context of CONFORM,163

applying SNAP to every contributed dataset ensures that all data entering the foundation model is164

maximally informative, optimized for data quality and reliability, and robust to the structured noise165

sources inherent in large-scale, crowd-sourced fMRI. Finally, because non-stimulus-driven sources of166

neural variability may themselves be of scientific interest, SNAP also enables these components to be167

cleanly separated for downstream analyses that focus on modeling noise rather than signal.168

2.2 Integration of fMRI data across studies—MOSAIC169

Individual fMRI experiments face practical constraints that create trade-offs between the number of170

participants, the number of experimental trials, and stimulus diversity. Any resulting conclusions171

are thus limited in scope. However, the aggregation of existing fMRI datasets, here called MOSAIC172

(Meta-Organized Stimuli And fMRI Imaging data for Computational modeling), achieves a vastly173

larger scale useful for measuring cross-dataset and cross-subject generalization and training of174

high-parameter artificial neural networks.175

MOSAIC [14] currently preprocesses eight event-related fMRI vision datasets (Natural Scenes176

Dataset [3], Natural Object Dataset [5], BOLD Moments Dataset [15], BOLD5000 [2], Human177

Actions Dataset, Deeprecon [17], Generic Object Decoding [18], and THINGS [4]) with a shared178

pipeline and registers all data to the same cortical surface space. Single-trial beta values in MOSAIC179

are estimated using GLMsingle and a high integrity test-train split is curated across datasets.180

At present, MOSAIC contains 430,007 fMRI-stimulus pairs from 93 participants across181

162,839 unique image stimuli. The stimuli are further divided into 144,360 training stimuli, 18,145 test182

stimuli, and 334 synthetic stimuli for rigorous model training and evaluation. Their shared preprocess-183

ing pipeline uses open source frameworks and is thus compatible with methods advancements such184

as SNAP and expansion to other registration spaces such as subject native. Crucial to CONFORM,185

datasets can be added to MOSAIC post-hoc regardless of experimental design, acquisition, and size.186

MOSAIC is a critical first step to enable researchers to overcome individual dataset limitations and187

tackle complex research questions at an unprecedented scale. The MOSAIC dataset and preprocessing188

code will be available soon for download. In tandem with the MOSAIC team, the larger CONFORM189

community will work to leverage MOSAIC’s extensible design to allow the seamless integration of190

new datasets, creating an evolving foundation for collaborative human vision research.191
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2.3 Generalizing across participants and studies in a low data regime—BraInCoRL192

Different datasets may utilize different stimuli, employ different scanning parameters, and collect193

data from diverse populations. This makes it challenging to build generalizable models that predict194

neural activity across diverse participants. Traditional approaches require large, participant-specific195

fMRI datasets, limiting their scalability for clinical and research applications. This variability in196

cortical organization – driven by anatomical and functional differences, developmental experiences,197

and learning –necessitates a framework that can adapt to new individuals with minimal data while198

capturing shared functional principles of visual processing.199

To address this, BrainCoRL (Brain In-Context Representation Learning) [20] leverages meta-learning200

and transformer-based in-context learning to predict voxelwise neural responses from few-shot201

examples without fine-tuning. Inspired by how large language models adapt to new tasks through202

contextual examples, BrainCoRL treats each voxel’s response function as a learnable mapping that203

can be inferred from limited data. The model is trained across multiple participants to discover204

shared functional principles of visual processing, enabling it to rapidly adapt to new individuals205

without additional fine-tuning. BrainCoRL outperforms traditional voxelwise encoding models in206

low-data regimes, generalizes to entirely new fMRI datasets acquired with different scanners and207

protocols, and provides interpretable insights into cortical selectivity through its attention mechanisms.208

Notably, the framework can also link neural responses to natural language descriptions, opening new209

possibilities for query-driven functional mapping of the visual cortex. By dramatically reducing the210

data requirements for accurate neural encoding models, this work paves the way for more scalable211

and personalized applications in both basic neuroscience and clinical settings, where understanding212

individual differences in brain organization is crucial for diagnosis and treatment.213

3 Impact and Conclusions214

Although existing large-scale fMRI datasets have been valuable, used in hundreds of studies to support215

a wide range of novel scientific discoveries, they are limited by their single-site, small-N approach. To216

move beyond this, we propose CONFORM—a unique crowd-sourcing strategy that leverages recent217

advances in data processing, data aggregation, analysis, and a new crowd-sourced infrastructure.218

This new approach directly addresses the financial and logistical challenges of collecting large219

datasets while enabling unprecedented stimulus diversity. However, simply crowd-sourcing data is220

not enough; CONFORM’s success will be predicated on the specific data and modeling optimizations221

we introduce to handle the multifaceted noise inherent in fMRI. Moreover, by creating models that222

can effectively predict new data with only a small amount of information, we will dramatically223

broaden the accessibility of NeuroAI methods. This will empower a much wider range of researchers224

to leverage the power of modern AI using the typical scale of data they collect, ultimately accelerating225

scientific discovery.226

Critically, generalizing across individuals requires addressing both biological differences and technical227

noise sources, such as artifacts from different scanners and motion. We directly tackle these challenges228

through a three-pronged approach: (1) Data Acquisition: Collect a limited amount of data from229

each participant, including repeated and partially overlapping stimuli across the population, to boost230

both data quality and stimulus diversity. (2) Denoising: Apply a two-level denoising strategy. Use231

GLMsingle to optimize the signal-to-noise ratio within each subject and, then, apply SNAP to separate232

stimulus-related variance from idiosyncratic noise, improving data quality and interpretability. (3)233

Alignment: Learn a mapping from the denoised data into a shared representational space, thereby234

allowing us to make accurate predictions across individuals. This can be achieved through advanced235

methods such as BrainCoRL, which does not require overlapping stimuli, or using standard functional236

alignment techniques that rely on overlapping stimuli in the denoised data.237

By integrating and advancing these tools to create a true foundational model, we can answer down-238

stream questions using the dataset population to make predictions about new individuals or clinical239

populations. For example, recent advances in visualizing and labeling neural representations of object240

categories [24, 25] could be extended to autistic individuals, thereby providing a much clearer picture241

of the encoding of atypically processed visual information (e.g., human faces). Thus, a wide range of242

research domains will have access to modern AI methods using only the scale of data they typically243

collect. Ultimately, this generalizability will enable the next generation of insights into brain function244

across a much wider range of populations.245
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